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ABSTRACT
Metabolomics is a promising approach for the identification of chemical compounds that serve for
early detection, diagnosis, prediction of therapeutic response and prognosis of disease. Moreover,
metabolomics has shown to increase the diagnostic threshold and prediction of type 2 diabetes.
Evidence suggests that branched-chain amino acids, acylcarnitines and aromatic amino acids may
play an early role on insulin resistance, exposing defects on amino acid metabolism, b-oxidation,
and tricarboxylic acid cycle. This review aims to provide a panoramic view of the metabolic shifts
that antecede or follow type 2 diabetes.

KEY MESSAGES

� BCAAs, AAAs and acylcarnitines are strongly associated with early insulin resistance.
� Diabetes risk prediction has been improved when adding metabolomic markers of dysglycemia

to standard clinical and biochemical factors.
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Introduction

Metabolomics is a promising approach to understand

and explore the body cell homeostasis; it is the

metabolic complement of functional genomics and has

proven to be very useful in medical and life sciences

research (1). Metabolomics allows the profiling of

numerous small endogenous molecules (51500 Da) in

cells, body fluids and tissues, most of these molecules

were previously known. The whole ensemble of low

weight molecules that serve for the total compound of

reactions for maintenance, growth, and normal function,

is known as metabolome (2). Metabolites are markers of

biochemical, physiological, or pathological reactions and

are able to show the interaction among different

pathways that develop within a living cell (3,4).

Metabolic pathways in the cell can be described

qualitatively and quantitatively and show the endpoints

of gene expression and cellular environmental changes

(5), providing an understanding of the physiology of the

cell and by this the general status of the living organism.

One of the goals of metabolomics besides the

understanding of physiologic pathways is to develop

diagnostic biomarkers that could serve as tools for

clinical practice, diagnosis, prognosis, and predictors of

therapeutic response (6). The human metabolome data-

base contains440,000 metabolite entries (7). According

to the Human Metabolome Database browser filters,

�1900 endogenous compounds have been detected

and quantified in blood while �1200 have been

detected and quantified in urine; however, only 43

metabolites associated with type 2 diabetes (T2D) have

been detected and quantified in blood and urine, this

data is available at the human metabolome database

webpage (7). The metabolic profile is dynamic, it varies

continuously in response to changes in gene expression

or changes induced by exogenous metabolites such as

those provided by food or drugs (8).

The metabolic phenotype is ruled by the central

dogma of cellular biology, DNA provides mRNA that

serves as material for the translation and expression for

protein synthesis, thus metabolic phenotype is deter-

mined by concentrations of biological products inside

and outside the cell, tissue, or fluid. Metabolomics has an

important role in this organic interplay; however,

metabolites may imply a negative feedback on DNA,

contrasting the directionality of the central dogma (9).

The objective of this review is to provide a panoramic

view of the findings that have been made in the
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metabolomics field in association with T2D, showing

consistency and differences in results between studies.

Metabolomics: the role in diabetes and other
metabolic conditions

Several areas of opportunities are open to apply

metabolomics in clinical practice. For example, new

diagnostic and predictive markers are required. In

addition, emphasis has been placed in a patient-

centered approach for treatment of T2D, creating the

need for having indicators for future response for

individual therapies (10).

Dysglycemic states and diabetes

Metabolomics has completed many aspects about the

pathologic pathways generated in diabetes; Carnitines,

branched chain amino acids (BCAAs), aromatic amino

acids (AAAs), and free fatty acids (FFAs) could be

potential markers associated with dysglycemic states,

but although there are many answers about their

function in relation to diabetes, its precise role is not

well defined yet. Observations on b-oxidation dysregula-

tion have given new milestones for the understanding of

the dysglycemic metabolic phenotype (11).

It is well known that high concentrations of insulin or

its inability to regulate intracellular responses cause a

metabolic shift of energy obtainment through b-oxida-

tion. Zhao et al. (11) show that palmitate (C16:0)

concentrations were associated with insulin resistance

when normal glucose tolerance-insulin sensitive sub-

jects, normal glucose tolerance-insulin resistant subjects

and two dysglycemic states, impaired fasting glucose

(IFG), and impaired glucose tolerance (IGT) were

evaluated. Palmitate is an indicator of FFA availability;

the latter can be measured by the palmitate rate of

appearance (Ra). Palmitate Ra has been negatively

correlated with skeletal muscle insulin sensitivity, in

basal and insulin infusion conditions in non-diabetic

women (12). There is no certainty that these metabolic

modifications precede or follow insulin resistance, how-

ever, a prior study that evaluated subjects either with

IGT or diabetes compared to obese non-diabetic sub-

jects, Ra of FFAs was found to be decreased on IGT and

T2D compared to obese subjects, supporting the idea

that hyperinsulinemia causes a decrease in FFA Ra and

suggesting that intramuscular triglyceride deposits, pre-

sent on IGT and T2D, could affect the transportation of

FFAs into the cytosol and consequently decrease FFA

oxidation rate, demonstrating that the same defects in

FFA metabolism and adiposity signals exist between

subjects with IGT and T2D (13,14).

Adiposity signals also influence the expression of

enzymes related to BCAA catabolism, particularly the

Branched-chain alpha-ketoacid dehydrogenase complex

(BCKD). Analysis of omental adipose tissue from obese

women with or without metabolic syndrome that

underwent bariatric surgery showed that obese

women without metabolic syndrome had higher con-

centrations of enzymes associated with BCAA catabolism

when compared to obese women with metabolic

syndrome, supporting the fact that in metabolic syn-

drome or associated conditions, BCKD complex is

impaired by other mechanisms different from obesity

(15). Alpha-hydroxybutyrate (a-HB), a byproduct of

a-ketobutyrate (a-KB) synthesis, identifies insulin resist-

ant and normal glucose-insulin sensitive subjects, fur-

thermore, it may be a good diagnostic tool when used

conjointly with other biomarkers to identify IR and IGT

earlier than clinical tests available to date (16,17).

Palmitate, glycine, and long chain acylcarnitines as

decanoylcarnitine also identify insulin resistance how-

ever its usefulness has been seen in later stages in

comparison to a-HB (16).

a-HB and Linoleoyl-glycerophosphocholine (L-GPC)

have opposite effects in b-cell function, a-HB decreases

glucose-mediated insulin secretion and is a positive

independent predictor of insulin sensitivity, L-GPC on

the other way, increases glucose-mediated insulin

secretion and is a negative predictor of insulin sensibil-

ity; this was observed during follow-up of subjects that

progressed to dysglycemia and T2D which showed

higher concentrations of a-HB and lower concentrations

of L-GPC whereas an inverse behavior was observed in

subjects that remained euglucemic during the following

of the RISC and BOTNIA cohorts (18). Elevated concen-

trations of BCAA, gluconeogenic amino acids and

decreased glycine concentrations appear to predict

progression to dysglycemia. Studies points show that

increased fasting concentrations of a-HB and decreased

L-GPC are indicators for glucose intolerance and have a

similar power regarding traditional tests like the 2-h

glucose challenge (18).

In a recent study, low serum glycine concentrations

have shown a strong relationship with red meat intake

and T2D risk on a subset of the EPIC-Potsdam cohort

when followed for a mean of 7 years. The stated

mechanism is due activation of glycine-dependent

pathways in response to red meat ingestion, thereby

glycine is related to glutathione synthesis in response to

oxidative stress an insulin resistance. Furthermore, Heme

production in response to iron availability is a pathway

that consumes glycine (19). However, red meat role on

diabetes should be taken cautiously and studied more

thoroughly although there’s evidence that supports this
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hypothesis; insulin-resistance leads to expression of

ALAS-H enzyme which catalyzes conversion of glycine

to succinyl-CoA and 5-aminolevulinic acid leading to

Heme synthesis (20). In addition to glycine, biomarkers

that are consistent with other recent studies were

associated with diabetes, diacyl-phosphatidylcholine,

acyl-alkyl-phosphatidylcholines, lysophosphatidylcho-

lines, and sphingomyelins, which will be discussed

further in this review (19,21,22). Other glycine intermedi-

ary metabolite as b-Hydroxypyruvate has been recently

observed as diabetes predictor, b-Hydroxypyruvate alters

the excitatory properties of myenteric neurons and

reduce islet insulin content on mice, furthermore,

b-Hydroxypyruvate-to-D-Serine ratios have been found

decreased on subjects with impaired tolerance glucose

compared to subjects with normal glucose tolerance

and T2D, exposing the neural relay that amplifies

insulin secretion in response to an altered glucose

homeostasis (23).

Batch et al. (24) assessed metabolic wellness in the

WLM, CATHGEN, and STEDMAN cohorts; patients were

classified as MW (metabolically well) and MUW (meta-

bolically unwell) (two or more of: impaired fasting

glucose, hypertension, hypertriglyceridemia, low HDL-C,

and insulin resistance based on HOMA). The metabolic

profile could discriminate metabolic wellness independ-

ently of BMI. According to BMI stratification, BCAA (Val,

Leu, Ile) Phe, Tyr, Met, Ala, and His showed differences

between groups. Importantly, BCAA also separated MW

from MUW patients independently of BMI, along with

acylcarnitines C3, C4, C5, and C5:1, non-esterified fatty

acids, glutamine and ornithine. Consistent results with

the association of BCAAs and high risk for insulin

resistance have been reported; adding dietary BCAA

within a background of obesity can affect mitochondrial

function, which also generates accumulation of incom-

pletely oxidized metabolites derived from lipids (25).

Increased levels of BCAA on insulin-resistant states

indicate a reduced BCAA catabolism however, in healthy

subjects BCAA intake may increase insulin sensitivity

(17,26). BCAA relate and predict insulin resistance but

there’s no certainty that they affect insulin functioning

mechanisms (27).

Control on dietary BCAAs could be used as a

treatment modality on insulin-resistance prone patients.

High dietary intake of BCAAs has been associated with a

decrease in diabetes risk in women and men from the

Takayama Study cohort, leucine was the strongest factor

that reduced diabetes risk, since it has an important role

in stimulating insulin release (28). In subjects with poor

metabolic control (HbA1c47%) and normal weight,

HOMA-IR, basal parameters of glucose and postprandial

parameters of glucose and insulin decreased importantly

with supplementation of dietary BCAAs; in the long term

glucose control improved with a decrease in HbA1c.

BCAAs can improve protein anabolism and muscle

synthesis resulting in greater glucose uptake by insu-

lin-sensitive tissues (29). Furthermore, BCAA profiles can

identify subjects that would benefit better from

weight loss and improve their insulin-sensibility (30).

Serum BCAAs are not entirely dependent on dietary

intake, increased serum BCAA on obese subjects is due

to a decrease in the quantity and activity of the

BCKD complex, which lowers BCAA catabolism and

clearance (28).

Assessment of insulin resistance with HOMA-IR in the

Finnish cohorts (31) showed that sex-dependent hor-

mones affect the metabolomic signature between men

and women. When women were obese BCAAs and Tyr

were associated with insulin resistance whereas in obese

men, Tyr, Ala, and ketone bodies showed a more

important association. Gln and b-Hydroxybutirate were

inversely related with insulin resistance. In addition,

genetic variants were assessed. Only the already known

GCKR protein gene showed association with insulin

resistance when the rs1260326 SNP was present. Ile, Ala,

a1-acid glycoprotein, total fatty acids, and n-9 saturated

fatty acids showed the strongest association with this

gene in relation to insulin resistance. Previous studies

have reported that large neutral amino acids show

important differences between obese men and women

when it comes to insulin resistance (32,33). High

concentrations of neutral amino acids induce protein

synthesis and inhibition of proteolysis and also decrease

glucose uptake and glycogen synthesis, causing a

disturbance in glucose uptake. These processes are

bound by the m-TOR signaling pathway for protein

synthesis and insulin-mediated glucose uptake (33).

Novel observations were noticed on saliva (34) when

compared conjointly with serum and urine of T2D

patients and healthy controls. 1,5-Anhydroglucitol (1,5-

AG) was found decreased in saliva of T2D patients and

positively correlated well with blood levels of 1,5-AG.

Urine levels of 1,5-AG in patients with T2D were

increased. A negative correlation was noted between

1,5-AG and both blood glucose and HbA1c. When the

renal threshold for glucose gets exceeded, the 1,5-AG

reabsorption gets impaired, explaining the observation

that low 1,5-AG in saliva or blood correlated with

glucosuria in patients with T2D. 1,5-AG is indicative of

glucose control 5–7 days prior to the test, putting forth

the possibility that it can be a useful tool for short-term

glucose control monitoring and diagnosis of T2D. A

summary of the metabolites that relate to dysglycemia is

presented on Table 1.
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Application of metabolomics in challenge studies

Metabolomics with regard to other ‘‘omics’’ reflects a

‘‘snapshot’’ of what is happening at a metabolic level.

When a controlled physiologic challenge is applied, the

metabolic network is exposed to extreme conditions

in which it must act quickly to maintain homeostasis,

revealing metabolomic fingerprints that otherwise may

stay unnoticed at baseline.

Glycerol, leucine, and isoleucine are strong predictors

of fasting insulin levels; this was observed in 22 healthy

young adults that underwent a 2-h oral glucose toler-

ance test (OGTT) and compared with 25 subjects

ingesting plain water (35). BCAAs such as leucine/

isoleucine and glycerol were significantly reduced after

the test according to the basal levels, explaining that the

effect that insulin exerts in proteolysis and lipolysis has

different power; during the 2-hour challenge there is a

more rapid and important decrease in glycerol than in

amino acid concentrations showing that insulin’s inhibi-

tory action is stronger on ketogenesis than proteolysis.

When IR and hyperinsulinemia are present, SREBP-1c

transcription factor (responsible for triglyceride and fatty

acid biosynthesis) is overstimulated by insulin, FFA

synthesis is accelerated and serum FFA increases in an

uncontrolled fashion, explaining the classic hypertrigly-

ceridemia of diabetes, and the increase in glycerol in

obese insulin-resistant subjects (36,37). In healthy sub-

jects, the insulin excursion and the decrease on glycerol

shows the well-regulated insulin function on inhibition

of fat breakdown.

Biochemical shifts of an OGTT of non-diabetic subjects

were assessed in the Framingham Offspring cohort. The

insulin excursion during the curve shifts metabolism

from a catabolic state to an anabolic state after the 2 h;

b-HB, isoleucine, lactate, orotate, and pyridoxate

changes related with insulin excursion during the

challenge. Blunting of the course was noticed on

insulin-resistant subjects when compared to insulin-

sensitive subjects. Serotonin and Vitamin B derivatives

showed a differential excursion on insulin resistant

subjects (38). Vitamin B1, is an essential cofactor of

pyruvate dehydrogenase, B5 is associated with the TCA

cycle and B6 with amino acid metabolism. Serotonin is

an important neurotransmitter that plays an important

role on glucose homeostasis. It has been observed that

deletion of the serotonin receptor gene 5-HT2 in rats

produced insulin resistance and T2D (39). Cysteine

metabolism is dependent on vitamin B-6, cysteine is

important for the synthesis of glutathione, an important

antioxidant that counters the oxidative stress of diabetes

(40). Glutathione deficiency has been linked with

impaired NEFA oxidation and insulin resistance in old

people, these same conditions have been reversed by

glutathione restoration in plasma (41).

Six metabolic challenges were performed by Krug

et al. (42) in 15 healthy Caucasian subjects volunteered

to a 4-day study. NMTR, LC-MS, FIA-MS, and NMR

spectroscopy were used for evaluation of sera and

breath. Subjects went through a 36-h fasting, liquid

standard diet (LSD), OGTT, oral lipid tolerance test

(OLTT), a physical activity test (PAT), and a cold pressure

stress test. As expected, during 36-h fasting NEFAs and

BCAAs showed high concentrations in plasma.

Propionylcarnitine (C3), proline, and C0 were positively

correlated with vareylcarnitine but negatively with C2.

During the 36-h fasting, C2 concentrations increased

whereas C0 decreased. Insulin and glucose were used as

parameters of anabolism, values showed high amplitude

between subjects in postprandial states such as OGTT,

SLD, or OLTT. We detailed this study because we

consider important the demonstration of the malleabil-

ity of the metabolic response in its two primary modes,

anabolism (OGTT, OLTT, and LSD) and catabolism

(fasting and exercise). It is known that during fasting,

lipolysis, and b-oxidation satisfy the need of energy,

CoA–esther by-products enter the mitochondria via the

palmitoyl-CoA carnitine transferase II shuttle, this trans-

porter requires C0 for transport into de mitochondria,

this explains the decrease in C0 during fasting; all

acylcarnitines except, C3, C4, and C5 showed an increase

when b-oxidation was enhanced; C0 and C2 show an

opposite effect in anabolic states where insulin is in high

concentrations. BCAA-derived acylcarnitines C3, and C5

have been reported to be increased on obese subjects

(25), C4 which is also derived from BCAA metabolism has

shown a positive correlation with basal glucose and

HbA1c (43). Acylcarnitines in general reflect FA, amino

acid oxidation rate and mitochondrial shuttle capability,

during catabolic states like fasting, acylcarnitines

increase in plasma indicating a greater lipid oxidation

rate (44). Some of the studies mentioned in this section

can be found on Table 1.

Diabetes risk prediction

Diabetes risk scores have a variable predictive ability

depending on the study population in which they are

developed. Traditional risk scores are based on clinical

features as age, familiar background, BMI, waist circum-

ference, and arterial blood pressure (45). Biochemical

features and chemical biomarkers such as fasting plasma

glucose, HDL, triglycerides, and liver enzymes can

increase the performance of risk scores. There are

various models for risk assessment, whether using

clinical, biochemical or genetic features, or a
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combination of these. The Finnish Diabetes Risk Score

for clinical features developed on the FINRISK studies

had an aROC curve of 0.85 and 0.87 in the 1987 and 1992

cohorts, respectively (46). The Cooperative Health

Research in the Region of Augsburg (KORA) survey

2000, assessed four screening questionnaires for undiag-

nosed diabetes, aROC curves showed low validity when

the former questionnaires were applied to different

populations; 61% for the Rotterdam Diabetes Study, 65%

for the Finnish Diabetes Risk Score, 67% for the

Cambridge Risk Score, and 90% for the San Antonio

Heart Study (47). The German Diabetes Risk Score

applied in the European Prospective Investigation into

cancer and Nutrition (EPIC)-Postdam Study achieved an

aROC curve of 0.84, however, this was designed and

applied to Caucasian population (48). When biochemical

features such as HDL, triglycerides and fasting glucose

were added to clinical features, the aROC curve

increased, as observed on the Atherosclerosis Risk in

Communities (ARIC) study (49) in which the aROC curve

increased from 0.71 to 0.80; similarly in the Framingham

Offspring Study and the German Diabetes Risk Score

(DRS) adding biochemical models (HDL, triglycerides,

HbA1c, fasting glucose) improved the aROC curves from

0.72 to 0.85 and 0.84 to 0.90, respectively. Interestingly,

the DRS used gamma-glutamyltransferase and alanine

aminotransferase to increase the aROC curve (50,51).

Subjects from the Botnia Study (52) where assessed with

a 2-h OGTT, 1-h glucose concentration showed to be the

best predictor for future diabetes, the aROC curve

increased from 0.67 (fasting plasma glucose) to 0.79 (1-

h glucose concentration) (53).

Although many risk models based on genetic factors

have shown poor prediction over clinical factors, some

have shown increased ability to predict diabetes (54).

Various SNPs have been identified on GWAS to be

associated with T2D, such as TCF7L2, KCNJ11, PPARG,

CDKAL1, IGF2BP2, CDKN2A/2B, FTO, and HHEX (55). In a

Japanese study, prediction improved with the construc-

tion of a risk model that included SNPs different from

those reported on GWAS studies, they achieved an aROC

curve of 0.80, regardless that they had little effect of

association with a phenotype (54). A predictive test

applied on the Framingham Heart Study dataset showed

an improved aROC curve of 0.606 when comparing 18

loci to a former 3 loci test (AUC 0.596), furthermore, this

risk score had better prediction of diabetes on individ-

uals under 50 years than those who were over this age

(56). Risk assessment on the Inter99 and ADDITION

studies, allowed to observe that genetic variants used

conjointly with conventional factors (BMI, age, and sex)

do not increase significantly the AUC over traditional

factors alone (0.92–0.93) (57–59). To evaluate the

metabolic phenotype on obesity independently of the

genetic load, a metabolic challenge with a high-calorie

meal was given to 16 weight-discrepant monozygotic

twins (43 kg/m2 of BMI) from two of the Finnish Twin

cohorts (FT16 and FT12). BCAAs, fatty acids (oleic acid

principally) and 3-hydroxybenzoic acid were higher at

baseline levels on obese subjects, the interesting fact is

that after the challenge the values converged on heavy

and lean twins, suggesting underlying mechanisms that

allow a strict homeostatic control after a high-caloric

load on obesity independently of the genetic load (60).

A prospective evaluation for T2D risk prediction in the

EPIC-Postdam cohort associated L-GPC with metabolic

imbalance. Acyl-alkyl-phosphatidylcholines, sphingo-

myelins, and lysophosphatidylcholines showed a nega-

tive association with T2D. On the other hand, diacyl-alkyl

phosphatidylcholines BCAA, AAA, C3, and glycine

showed a positive association with risk for T2D devel-

opment (19,22), Follow-up for a mean of 7 years,

consistently correlated L-GPC with insulin resistance.

Comparison of these metabolites with other risk scores

substantially increased the AUC for diabetes prediction;

AUC for DRS alone was 0.84, metabolites alone 0.84, and

for the DRS + fasting glucose + HbA1c + Metabolites the

aROC curve increased to 0.912 (21). 2-Aminoadipic acid

(2-AAA), a lysine degradation product, was found to be a

strong predictor of diabetes in normoglycemic subjects

of the FHS offspring study, and the MDC cardiovascular

cohort. 2-AAA showed strong association with insulin

resistance and b-cell function. Adjusting 2-AAA to diet,

BCAA and AAA did not change results; showing that 2-

AAA is an independent predictor for T2D development.

Administration of 2-AAA to experimental-mice eating a

standard diet versus mice eating high fat diet showed

lower glucose concentrations when 2-AAA was added as

supplementation, showing that 2-AAA increases insulin

secretion (61) (Table 1), however, 2-AAA has not yet

been tested in risk scores although it could be useful as

it does not directly correlate with other metabolomic

biomarkers of insulin resistance like BCAAs or AAA which

means its metabolic interplay may be somehow

different.

Women from the TwinsUK cohort (62) were metabol-

ically assessed; observations showed elevated concen-

trations of long chain lipids on women with IFG

compared to controls and short chain lipids were

decreased in T2D compared to controls. BCAAs and

their metabolites, 3-methyl-2-oxovalerate, 4-methyl-2-

oxopentanoate, and 3-methyl-2-oxobutyrate were

increased on IFG and T2D. 3-methyl-2-oxovalerate, a

product of isoleucine, showed the strongest association

with IFG and T2D. The association was able to be

replicated on an independent cohort from the KORA F4
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study (63) and on urine of different women from the

Twins UK (64) (Table 1). The findings reflect impairment

of mitochondrial function for BCAA catabolism, the high

amounts of by-products of BCAA may affect mitochon-

drial oxidation of glucose and lipids resulting in stress

and accumulation of BCAAs and intermediates (Table 1).

While Wang et al. (3) suggest causality between

increased BCAA and diabetes; other authors have

observed an opposite BCAA behavior (65). A likely

explanation may be in the differences between study

subjects, since obtainment of low BCAA concentrations

was observed in patients that had established diabetes

and treatment, suggesting that physiologic responses

may not be representative of early metabolic changes.

Even so, follow-up of patients with increased BCAA

showed no added differences over baseline results,

keeping its prediction value the same from base-line

examination through 12-year follow up (65).

Protective tools have been also evaluated; ingestion

of fruit and vegetables (FV) was assessed with a three

biomarker score on a sample from the EPIC-Norfolk

study; vitamin C, carotenoids (beta- and alpha-carotene),

and lutein correlated negatively with T2D incidence.

Vitamin C and carotenoids are responsive to changes on

total ingestion of FV, it was found that BMI and waist

circumference adjustment attenuated results, meaning

that a healthier diet which contains mayor quantities of

FV associates with body weight, an important modifiable

risk factor for T2D development (66).

Obesity

Sera and urine of obese subjects revealed a metabolic

signature of increased BCAA (Leucine/isoleucine, valine),

methionine, alanine, glutamate/glutamine, AAA (phenyl-

alanine and tyrosine), and C3, C5 acylcarnitines.

Moreover low levels of a-ketoglutarate and glycine

compounds were observed in urine. An important

relationship was observed regarding insulin resistance;

elevation of BCAAs modifies the function of the large

neutral amino acid transporter 1 receptor (LAT1), which

is needed for the entrance of BCAAs and AAA into the

cell (25) (Table 1). Evidence indicates that short chain

fatty acids (SCFAs) and BCAAs play an important role

between obesity and diabetes since obese people are

specially prone to develop diabetes when they have

increased concentrations of BCAA (67). It is speculated

that increased BCAAs concentrations stimulate the

production of SCFAs that act as modulators of fatty

acid metabolism by the stimulation of leptin production,

in this way SCFAs will exert inhibitory effects on lipolysis

of adipocytes and contribute to obesity. Furthermore,

BCAAs boost the conversion of pyruvate to alanine, a

highly glycogenic amino acid that has been found

clearly elevated in obese patients (68). There is not much

difference between the metabotypes of obese patients

and dysglycemic/diabetic states, suggesting the meta-

bolic mesh of these states is part of a closely related

entity, in which they share abnormal BCAA concentra-

tions. The metabolic mesh that links obesity and insulin

resistance was assessed by Gaussian graphical modeling

on a subcohort of the EPIC-Potsdam study (22), different

clusters segregated acylcarnitines and phospholipids

(Sphingomyelins, lysophosphatidylcholines, diacyl-phos-

phatidylcholines and acyl–alkyl-phosphatidylcholines) in

one group, and in other groups amino acids and

C6-Sugars as expected. Findings showed that acylcarni-

tines were positively correlated with obesity, diacyl-

phosphatidylcholines with higher triglyceride levels and

a greater risk for T2D and obesity, whereas acyl–alkyl-

phosphatidylcholines correlated negatively with obesity

(22). These findings were consistent with a previous

study performed on a cohort of the EPIC-Potsdam study

referred above (21). Interpreting the metabolome by

clustering different metabolites and using statistical

tools to assess their connection and role in disease

may be useful to understand and visualize the metab-

olite network and build prediction tools with differential

metabolites that characterize disease.

Short chain fatty acids (SCFA) with straight chain

have been related to altered gut microbiota metabol-

ism, gut microbiota is the main responsible for the

production of these compounds which are derived

from the fermentation of carbohydrates and BCAA

catabolism (68,69). Proteins that reach the colon are

metabolized by the gut microbiota and generate by-

products such as a-HB, other products such as hippuric

acid and 3-hydroxyhippuric acid are produced by the

degradation of AAA, these metabolites can be mea-

sured in urine and have been related to the phenotypic

changes of gut microbiota that characterize IGT and

obesity (11,70,71). Amino acids support bacterial

growth and regulate energetic homeostasis; gut bac-

teria contain mayor quantities of BCAA than other

amino acids. Lysine, arginine, glycine, and BCAAs

generate a mixture of metabolic end-products that

contribute to the metabolic profile of dysglycemia,

among them ammonia, SCFA (acetate, propionate,

butyrate), and branched-chain fatty acids (valerate,

isobutyrate, and isovalerate), these metabolites appear

to modulate the bacterial physiology by signaling

pathways that influence the gut epithelial cell integrity

and immune system performance (72–74). Faecal sam-

ples of obese donors, as expected, show higher

concentrations of SCFA, however this may reflect a

decrease in the absorption of SCFA or an increase of
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SCFA production by gut microbiota, a higher conver-

sion of AA to SCFA may contribute to this finding,

reflecting higher amino acid catabolism by gut micro-

biota. Clostridium are the most important bacteria

related to amino acid generation and have been

previously reported on T2D (75), high-fat diet (HFD)-

fed mice with high representations of Clostridium

ramosum led to mayor weight increase when compared

to HFD fed mice without this bacteria (76).

About 90% of the ‘‘lean’’ gut microbiota is repre-

sented by Firmicutes (Gram-positive), Bacteroidetes

(Gram-Negative), Actinobacteria (gram-positive), and

Proteobacteria phyla (77,78). Obesity and T2D cause an

increase of the Firmicutes and decrease of the

Bacteroidetes representation (79–81). The gut microbiota

participates in the metabolic interplay that links bile acid

metabolism with glucose and lipid homeostasis (82,83).

Primary biliary acids (BA) are converted to secondary BA

mainly by Firmicutes, The increase of the Firmicutes

representation on T2D and overweight patients has

been related with higher conversion of secondary BA

and a decrease of primary BA in serum (84). Interesting is

that secondary BA inhibit the expression of gluconeo-

genic genes through farnesoid X receptor FXR and

enhance insulin secretion and sensitivity in the pancreas

(85), and that primary BA promote the secretion of GLP1

on intestinal cells by TGR-5 activation and has a

protective effect on diet-induced obesity (86,87).

Although this could be a response mechanism to

maintain homeostasis on obesity and insulin resistance,

this contrasting data needs to be studied further.

Among the Firmicutes phyla, an important genus

called Blautia is the most representative; Blautia

coccoides can activate TNFa and cytokine secretion

greater than lipopolisacharide (LPS) (88), triggering low

grade inflammation by means of ‘‘metabolic endotox-

emia’’ through activation of CD14/toll-like receptor 4

(TLR-4) dependent mechanisms (89–91). The increase of

endotoxemia and high-fat diet alters intestinal perme-

ability and reduces the expression of tight junction

proteins; chylomicrons carry LPS and deliver it to blood,

contributing to this state of metabolic endotoxemia

(92,93). Supporting this fact, it has been observed that

continuous subcutaneous infusion of LPS for 4 weeks on

murine models results in higher fasting glycemia,

hyperinsulinemia, weight gain, and kytokine expression

in a similar fashion as mice fed with high-fat diet (94).

While Firmicutes phyla increases on obesity and

insulin resistance conditions, butyrate-producing bac-

teria (Roseburia and Faecalibacterium Prausnitzii most

importantly) show an inverse behavior, showing lesser

representations when compared to healthy subjects (95).

Butyrate is the most important energy source of colonic

bacteria, butyrate, and its derivatives promote GLP-1 and

PYY secretion by L-cells, decrease of butyrate-producing

bacteria on obese subjects can explain some of the

deterioration on GLP-1 related functions (96,97). Gut

microbiota transplant from obese mice to germ-free

mice leads to a significant increase of body fat and

insulin resistance on the later compared with lean mice,

supporting the fact that obesity may be a consequence

of an altered gut microbiota and not otherwise (98). On

the other hand, transplant of ‘‘healthy’’ gut microbiota to

obese subjects appears to be associated with metabolic

improvement and better insulin sensitivity (99). Diet may

be the most important factor that influences the

representation of gut microbiota. A decrease of

Bifidobacterium abundance has been related with high-

calorie diet, high cholesterol, and ethanol consumption,

moreover administration of Bifidobacterium or probiotics

improves glucose metabolism and decreases inflamma-

tion (88), whereas Akkermansia Muciniphila administra-

tion correlates negatively with weight (100) and its

abundance decreases in obesity and T2D (101).

Branched chain amino acids (BCAA) and AAA (Phe,

Tyr) are increased on insulin-resistant obese individuals

(102) and in non-diabetic individuals that progress to

T2D (30), moreover they are useful to predict T2D

development. Threonine, tryptophan, lysine, and histi-

dine have been also related with insulin-resistance

associated to obesity and T2D, however, they do not

predict development of disease (3). Obese individuals

with hyperinsulinemia tend to have greater BCAA and

AAAs concentrations. Gastric Bypass has shown to

decrease plasma insulin, improve HOMA-IR, and T2D

control; together with this, BCAA/AAAs levels decrease

and relate with insulin sensitivity (67). Methionine and

catabolic derivatives (cysteine and cystine) increase in

obesity, insulin resistance, and T2D; increases in the

concentration of cystine directly correlate with BMI and

body fat in the Hordaland Homocysteine Study

(103,104). The amino acid pattern on blood of obese

subjects could be due to a limited catabolism of BCAA

by an impaired function of BCKD complex on adipose

tissue, liver, and muscle (40). To assess if this pattern of

BCAA is influenced by obesity or insulin resistance alone,

PPARg agonists were tested on white adipose tissue

(WAT) of C57BL/6K healthy mice and obese db/db mice,

obese mice had reduced BCKD complex proteins on

retroperitoneal WAT, suggesting an alteration of insulin

signaling pathways that impairs BCAA utilization on WAT

(15). PPAR-gamma treatment in humans increases mRNA

expression of BCKD complex on WAT and increases

insulin sensibility possibly by an improvement on insulin

action or glucose usage (105), it is possible that these

effects on insulin action may also affect BCAA
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metabolism. Omental adipose tissue may be a major

responsible for the BCAA phenotype on obesity, it has

been observed that BCAA catabolic enzymes are

lowered on omental WAT but not subcutaneous WAT

of obese women with metabolic syndrome, this suggest

that subcutaneous adipose tissue may not play an

important role on the BCAA signature and that the

metabolic syndrome may affect BCAA enzyme expres-

sion (15). Altogether, the metabolic phenotype that

consistently repeats, shows that obesity, metabolic

syndrome, and type 2 diabetes share to a greater

extent, perturbations on BCAA, acylcarnitines (medium

and long) and lipids, directing to common behaviors,

lifestyles, and risk factors that trigger disease develop-

ment (106).

The large neutral amino acid transporter (LAT1)

introduces large neutral amino acids into the cell, high

concentrations of BCAA compete for this transporter and

impair AAA uptake, explaining the increase on plasma

AAAs (107), this uncoupling of AAA entrance into the cell

affects neurotransmitter production since serotonin is

derived from tryptophan and catecholamines are

derived from phenylalanine and tyrosine.

Neurotransmitter perturbations are strongly associated

with depression and obesity (108).

Saturation of fatty acid oxidation (FAO) in obesity

leads to an accumulation of acylcarnitines and depletion

of TCA cycle intermediaries (malate, succinate, and

citrate), the high FAO flux does not match with TCA

cycle flux and results in an incomplete FAO (109).

Alterations on CPT1 may decrease FAO on obese people,

since obese subjects have decreased CPT1, the lipid-rich

intracellular ambient affects insulin signaling and FAO

rate, this mitochondrial overload leads to an incomplete

b-oxidation which overpasses the TCA cycle capacity to

oxidize products from FAO and causes accumulation of

intermediary metabolism products such as acylcarnitines

(33,110).

Discussion and perspectives

Evidence shows that the most important changes have

been observed on intermediary metabolism (Table 1).

Increased acylcarnitines suggest an overload of b-oxida-

tion that cannot be matched by the TCA cycle (109).

BCAAs and AAA have been found to be strongly related

with early insulin resistance and T2D prediction inde-

pendently from BMI (24). It is well-known that when

insulin resistance is present some associated metabolites

show sex-related associations, being women more prone

to increase BCAAs and men prone to increase Tyr, Ala,

and ketone bodies (31). There is not yet a causality

established between BCAAs and insulin resistance, even

though evidence points that the increase of BCAAs is the

secondary event, this could be due to perturbations on

the BCKD complex observed on hyperinsulinemia and

obesity (15,28,40). Another mechanism that may affect

BCAA metabolism is the relative IGF-1 deficiency on

obese subjects that makes the circulating BCAA pool to

be directed towards catabolic pathways, this can explain

the decrease of a-KG and increase of glutamate, since

a-KG is consumed and glutamate is synthetized in the

first step of BCAA catabolism.

Challenge studies seem to be the best method to

evaluate metabotypes, due to their ability to improve

variability of the metabolome. Metabolic challenges

have exposed the effects between insulin and the

affected pathways of dysglycemic states, showing the

existence of a metabolic shift from catabolism (fasting,

exercise) to anabolism (hyperinsulinemia), this state of

anabolism appears to be maintained on obesity and

insulin resistance (111). The OGTT provides a dynamic

scene of the interaction between insulin and glucose,

additionally it offers the advantage of setting the

individual as its own control. FFAs overload b-oxidation

on skeletal muscle and liver in an attempt to maintain

energy substrate when insulin resistance is present; the

defective oxidation of fatty acids produces acylcarnitine

accumulation, thus an increased blood and urine

pattern can be observed (21,43,110). A fact that

supports the role of acylcarnitines on dysglycemia is

its interaction with NF-Kb, promoting inflammation and

thereby contributing to insulin resistance (112).

Metabolites associated with TCA cycle, amino acid

metabolism, b-oxidation, and glycolysis expose a dif-

ferent pattern between subjects with normal insulin

concentrations and hyperinsulinemia. Alterations on

carnitine palmitoyltransferase 1 (CPT1), may be the

cause of the acylcarnitine pattern found on dysglyce-

mia and diabetes. CPT1 catalyzes the esterification of

carnitine with acyl-CoA to produce acylcarnitines and

transport the acyl group into the mitochondria and

proceed to b-oxidation, an increased glycolytic flux

increases malonyl-CoA concentrations, malonyl-CoA is a

potent inhibitor of CPT1, thereby disturbing acylcarni-

tine metabolism (113).

Potential tools for diagnosis have emerged from

metabolomics studies (a-hydroxybutyrate, L-GPC)

(16,18,21), as well as tools for normoglycemia compli-

ance monitoring (1,5-anhydroglucitol) (34). However,

further studies are needed to target the related metab-

olites with therapy strategies, and evaluate their power

in predictive risk scores. To associate metabolites in a

predictive matter, observations must be made before

the development of disease so the risk for disease and

comorbidities can be stablished. The full characterization
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of the metabolome in T2D remains a mayor challenge

because the large amounts of metabolites that have

been related and its variability make a complex pheno-

type. Study designs for transversal approaches need to

be more heterogeneous and adjust variables between

groups to the greatest possible to make them more

similar (114).

Few metabolomics studies report sensitivity, specificity

or ROC curves, making difficult the agreement on which

biomarkers can be translated to the clinical field, beyond

reporting biomarkers in a qualitative or quantitative

fashion information should be analyzed to assess the

validity of a given biomarker when extrapolating it to the

general population, ROC curves are the standard for the

discovery and development of diagnostic and prognostic

tests. When a metabolomics approach is made, various

metabolites can be associated by chance with a given

condition, however these false positives must be vali-

dated with different analytical and validation experiments

to assure that the findings may be significant (115).

In the previously described study performed by

Ferranini et al. (18), various ROC curve analyses were

made comparing the standard diabetes predictors (famil-

iar background, sex, age, and BMI) and 2-h plasma

glucose with an increase on ROC curves by 0.044 for the

RISC cohort and 0.017 for the Botnia cohort. Increases on

ROC curve values in both cohorts were observed when

adding a-HB and L-GPC to fasting plasma glucose and 2-h

plasma glucose improving ROC curve values by 0.018 for

the RISC cohort and 0.008 for the Botnia cohort.

Limitations exist when calibrating of the tools for T2D

risk prediction, most of it implies that the tool should be

used on the population in which it has been developed or

recalibrated for another population (116). In general, the

metabolomic analyses increase ROC curves when added

to classical clinical and biochemical markers, a more

detailed discussion can be found on the diabetes risk

prediction section.

With the development of metabolomics, it is expected

to achieve a more personalized control of diabetes.

Depending on the patient’s metabolomic profile, it

would be possible to perform more effective strategies

with personalized decisions based on the individual

behavior, phenotypic features, laboratory findings, gene

sequences, and metabolic and proteomic profiles. The

late advances in the field of omics offer new opportu-

nities to improve early diagnosis, clinical outcome,

prevention of complications, and decrease in disease

progression (117).
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Kuxhaus O, Floegel A, et al. Amino acids, lipid metabolites,

and ferritin as potential mediators linking red meat

consumption to type 2 diabetes. Am J Clin Nutr.

2015;101:1241–50.
20. Drábková P, Šanderová J, Kovařı́k J, KanĎár R. An assay of

selected serum amino acids in patients with type 2

diabetes mellitus. Adv Clin Exp Med. 2015;24:447–51.
21. Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost

HG, et al. Identification of serum metabolites associated

with risk of type 2 diabetes using a targeted metabolomic

approach. Diabetes. 2013;62:639–48.
22. Floegel A, Wientzek A, Bachlechner U, Jacobs S, Drogan D,

Prehn C, et al. Linking diet, physical activity, cardiorespira-

tory fitness and obesity to serum metabolite networks:

findings from a population-based study. Int J Obes (Lond).

2014;38:1388–96. [Internet]. Available from: http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid¼422

9626&tool¼pmcentrez&rendertype¼abstract
23. Zhang S, Wang S, Puhl MD, Jiang X, Hyrc KL, Laciny E, et al.

Global biochemical profiling identifies b-hydroxypyruvate

as a potential mediator of type 2 diabetes in mice and

humans. Diabetes. 2015;64:1383–94.
24. Batch BC, Shah SH, Newgard CB, Turer CB, Haynes C, Bain

JR, et al. Branched chain amino acids are novel biomarkers

for discrimination of metabolic wellness. Metab Clin Exp.

2013;62:961–9.
25. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD,

Lien LF, et al. A branched-chain amino acid-related

metabolic signature that differentiates obese and lean

humans and contributes to insulin resistance. Cell Metab.

2009;9:311–26.
26. Devkota S, Layman DK. Protein metabolic roles in treat-

ment of obesity. Curr Opin Clin Nutr Metab Care.

2010;13:403–7.
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D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 2
1:

10
 0

2 
Fe

br
ua

ry
 2

01
6 


	Metabolomics in diabetes, a review
	Introduction
	Metabolomics: the role in diabetes and other metabolic conditions
	Discussion and perspectives
	Disclosure statement
	References


